Fricke and Meischner 1985

scientific article | Mar Biol

Depth limits of Bermudan scleractinian corals: a submersible survey

Fricke H, Meischner D


Depth distribution, zonation pattern and growth morphology of 17 hermatypic and 4 ahermatypic coral species were investigated at eight different locations along the Bermuda platform with the research submersible GEO and by SCUBA diving in August–September 1983. Hermatypic coral growth occurs to a depth of 50 to 70 m, with a single Montastrea cavernosa growing at 78 m. Dominant forms in shallow-water coral communities are Diploria sp. and Porites astreoides, while M. cavernosa, Agaricia fragilis and Scolymia cubensis occur in deep-water associations below 60 m. Vertical visibilities (up to 178 m) and distribution of the photosynthetically active radiation revealed good light penetration values (1% level at about 100 m depth), which should favour hermatypic coral growth to a much greater depth than it actually occurs. Nor should the prevailing temperatures limit the depth of coral growth. Most deep-water hermatypes observed grow on remnants of Pleistocene reefs down to about 60 m. The vast areas of large massed rhodolith nodules below 50 to 60 m are unsuitable bottom for coral colonisation. Macroalgae growth seems to be the strongest factor controlling coral growth in deep water. Bermuda stony corals have a low growth form diversity. Various intraspecific morphs may occur at the same as well as at different depths, with a general trend towards flatter shapes with depth. Comparison with a similar study on Red Sea corals suggests that annual distribution of radiant energy on the most northern Atlantic reefs of Bermuda may be responsible for the occurrence of flat and cuplike growth forms in relatively shallow water, and for the shallower depth limits of hermatypic growth.

Research sites
Depth range
19- 217 m

Mesophotic “mentions”
0 x (total of 5139 words)

* Presents original data
* Focused on 'mesophotic' depth range
* Focused on 'mesophotic coral ecosystem'

Community structure

Scleractinia (Hard Corals)
Algae (Macro, Turf and Crustose Coralline)


Manned Submersible
SCUBA (open-circuit or unspecified)

Author profiles