Publications

Prasetia et al. 2017


scientific article | PLoS ONE | open access Open access small aa108fa7f478951c693af64a05bc4b46e6711dbb69a20809512a129d4d6b870f

Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery

Prasetia R, Sinniger F, Hashizume K, Harii S

Adobe pdf ff6e8bea21f0598930b59d2452bacbad49a13eb0fa773865059b4c2ed088a358
Www fec836ca290318f37dc3ecd481f22b98faf488d5ddef687807ca6b76d8e893ed
Gscholar 58dd9f05df3b8d1811d087e8507325500777053d6677b471fd75373a30a4cee1
Abstract

Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential contribution of mesophotic corals to shallow coral reef recovery. However, the reproductive biology of mesophotic S. hystrix and its potential to recolonize shallow reefs is currently unknown. This study reports for the first time, different temporal scales of reproductive periodicity and larval settlement of S. hystrix from an upper mesophotic reef (40 m depth) in Okinawa. We examined reproductive seasonality, lunar, and circadian periodicity (based on polyp dissection, histology, and ex situ planula release observations) and larval settlement rates in the laboratory. Mesophotic S. hystrix reproduced mainly in July and early August, with a small number of planulae being released at the end of May, June and August. Compared to shallow colonies in the same region, mesophotic S. hystrix has a 4-month shorter reproductive season, similar circadian periodicity, and smaller planula size. In addition, most of the planulae settled rapidly, limiting larval dispersal potential. The shorter reproductive season and smaller planula size may result from limited energy available for reproduction at deeper depths, while the similar circadian periodicity suggests that this reproductive aspect is not affected by environmental conditions differing with depth. Overall, contribution of mesophotic S. hystrix to shallow reef rapid recovery appears limited, although they may recruit to shallow reefs through a multistep process over a few generations or through random extreme mixing such as typhoons.

Behind the science
Img 8972cropped Img 9067 Img 1367
Img 7777 Xx3a4740 Img 4047 250micr
Journal.pone.0177034
Keywords
Meta-data
Depth range
38- 42 m

Mesophotic “mentions”
56 x (total of 5442 words)

Fields
Connectivity Reproduction

Research focus
Scleractinia (Hard Corals)

Locations
Japan - Okinawa

Research platforms
Diving - Regular Open-Circuit
Author profiles
Rian Prasetia ( 3 pubs)
Saki Harii ( 5 pubs)
Frederic Sinniger ( 2 pubs)